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Vibrational Motion 
Things wiggle. They do the back and forth. They vibrate; they shake; they 

oscillate. These phrases describe the motion of a variety of objects. They even 

describe the motion of matter at the atomic level. Even atoms wiggle - they do 

the back and forth. Wiggles, vibrations, and oscillations are an inseparable part 

of nature. In this chapter of The Physics Classroom Tutorial, we will make an 

effort to understand vibrational motion and its relationship to waves. An 

understanding of vibrations and waves is essential to understanding our 

physical world. Much of what we see and hear is only possible because of 

vibrations and waves. We see the world around us because of light waves. And 

we hear the world around us because of sound waves. If we can understand 

waves, then we will be able to understand the world of sight and sound. 



Bobblehead Dolls - An Example of a Vibrating Object 

To begin our ponderings of vibrations and waves, consider one of those 

crazy bobblehead dolls that you've likely seen at baseball stadiums or 

novelty shops. A bobblehead doll consists of an oversized replica of a 

person's head attached by a spring to a body and a stand. A light tap to the 

oversized head causes it to bobble. The head wiggles; it vibrates; it 

oscillates. When pushed or somehow disturbed, the head does the back and 

forth. The back and forth doesn't happen forever. Over time, the vibrations 

tend to die off and the bobblehead stops bobbing and finally assumes its 

usual resting position. 



The bobblehead doll is a good illustration of many of the principles of 

vibrational motion. Think about how you would describe the back and forth 

motion of the oversized head of a bobblehead doll. What words would you 

use to describe such a motion? How does the motion of the bobblehead 

change over time? How does the motion of one bobblehead differ from the 

motion of another bobblehead? What quantities could you measure to 

describe the motion and so distinguish one motion from another motion? 

How would you explain the cause of such a motion? Why does the back and 

forth motion of the bobblehead finally stop? These are all questions worth 

pondering and answering if we are to understand vibrational motion. These 

are the questions we will attempt to answer in Section 1 of this chapter. 
 



What Causes Objects to Vibrate? 

Like any object that undergoes vibrational motion, the bobblehead has 

a resting position. The resting position is the position assumed by the 

bobblehead when it is not vibrating. The resting position is sometimes referred 

to as the equilibrium position. When an object is positioned at its equilibrium 

position, it is in a state of equilibrium.  



As discussed in the Newton's Law Chapter of the Tutorial, an object which is 

in a state of equilibrium is experiencing a balance of forces. All the individual 

forces - gravity, spring, etc. - are balanced or add up to an overall net force of 0 

Newtons. When a bobblehead is at the equilibrium position, the forces on the 

bobblehead are balanced. The bobblehead will remain in this position until 

somehow disturbed from its equilibrium. 

http://www.physicsclassroom.com/Class/newtlaws/
http://www.physicsclassroom.com/Class/newtlaws/u2l1d.cfm


If a force is applied to the bobblehead, the equilibrium will be disturbed and 

the bobblehead will begin vibrating. We could use the phrase forced vibration 

to describe the force which sets the otherwise resting bobblehead into motion. 

In this case, the force is a short-lived, momentary force that begins the motion. 

The bobblehead does its back and forth, repeating the motion over and over. 

Each repetition of its back and forth motion is a little less vigorous than its 

previous repetition. 



 If the head sways 3 cm to the right of its equilibrium position during the first 

repetition, it may only sway 2.5 cm to the right of its equilibrium position 

during the second repetition. And it may only sway 2.0 cm to the right of its 

equilibrium position during the third repetition. And so on. The extent of its 

displacement from the equilibrium position becomes less and less over time. 

Because the forced vibration that initiated the motion is a single instance of a 

short-lived, momentary force, the vibrations ultimately cease. The bobblehead 

is said to experience damping. 



Damping is the tendency of a vibrating object to lose or to dissipate its energy 

over time. The mechanical energy of the bobbing head is lost to other objects. 

Without a sustained forced vibration, the back and forth motion of the 

bobblehead eventually ceases as energy is dissipated to other objects. A 

sustained input of energy would be required to keep the back and forth motion 

going. After all, if the vibrating object naturally loses energy, then it must 

continuously be put back into the system through a forced vibration in order to 

sustain the vibration. 



The Restoring Force 

A vibrating bobblehead often does the back and forth a number of times. The 

vibrations repeat themselves over and over. As such, the bobblehead will move 

back to (and past) the equilibrium position every time it returns from its 

maximum displacement to the right or the left (or above or below). This begs a 

question - and perhaps one that you have been thinking of yourself as you've 

pondered the topic of vibration.  

 

If the forces acting upon the bobblehead are balanced when at the equilibrium 

position, then why does the bobblehead sway past this position?  

 

Why doesn't the bobblehead stop the first time it returns to the equilibrium 

position? 



 The answer to this question can be found in Newton's first law of motion. Like 

any moving object, the motion of a vibrating object can be understood in light 

of Newton's laws. According to Newton's law of inertia, an object which is 

moving will continue its motion if the forces are balanced. Put another way, 

forces, when balanced, do not stop moving objects.  



So every instant in time that the bobblehead is at the equilibrium position, the 

momentary balance of forces will not stop the motion. The bobblehead keeps 

moving. It moves past the equilibrium position towards the opposite side of its 

swing. As the bobblehead is displaced past its equilibrium position, then a force 

capable of slowing it down and stopping it exists. This force that slows the 

bobblehead down as it moves away from its equilibrium position is known as a 

restoring force. The restoring force acts upon the vibrating object to move it 

back to its original equilibrium position. 



Vibrational motion is often contrasted with translational motion. In translational 

motion, an object is permanently displaced. The initial force that is imparted to 

the object displaces it from its resting position and sets it into motion. Yet 

because there is no restoring force, the object continues the motion in its 

original direction. When an object vibrates, it doesn't move permanently out of 

position. The restoring force acts to slow it down, change its direction and force 

it back to its original equilibrium position. An object in translational motion is 

permanently displaced from its original position. But an object in vibrational 

motion wiggles about a fixed position - its original equilibrium position. 

Because of the restoring force, vibrating objects do the back and forth.  

 



Other Vibrating Systems 

As you know, bobblehead dolls are not the only 

objects that vibrate. It might be safe to say that all 

objects in one way or another can be forced to 

vibrate to some extent. The vibrations might not 

be large enough to be visible. Or the amount of 

damping might be so strong that the object 

scarcely completes a full cycle of vibration. But as 

long as a force persists to restore the object to its 

original position, a displacement from its resting 

position will result in a vibration. 



Even a large massive skyscraper is known to vibrate as winds push upon its 

structure. While held fixed in place at its foundation (we hope), the winds force 

the length of the structure out of position and the skyscraper is forced into 

vibration. 



 A pendulum is a classic example of an 

object that is considered to vibrate. A 

simple pendulum consists of a relatively 

massive object hung by a string from a 

fixed support. It typically hangs vertically 

in its equilibrium position. When the mass 

is displaced from equilibrium, it begins its 

back and forth vibration about its fixed 

equilibrium position. The motion is regular 

and repeating. Because of the regular nature 

of a pendulum's motion, many clocks, such 

as grandfather clocks, use a pendulum as 

part of its timing mechanism. 



An inverted pendulum is another classic example of an object that undergoes 

vibrational motion. An inverted pendulum is simply a pendulum which has its 

fixed end located below the vibrating mass. An inverted pendulum can be made 

by attaching a mass (such as a tennis ball) to the top end of a dowel rod and 

then securing the bottom end of the dowel rod to a horizontal support.  



This is shown in the diagram below. A gentle force exerted upon the tennis ball 

will cause it to vibrate about a fixed, equilibrium position. The vibrating 

skyscraper can be thought of as a type of inverted pendulum. Tall trees are 

often displaced from their usual vertical orientation by strong winds. As the 

winds cease, the trees will vibrate back and forth about their fixed positions. 

Such trees can be thought of as acting as inverted pendula. Even the tines of a 

tuning fork can be considered a type of inverted pendulum 



Another classic example of an object that 

undergoes vibrational motion is a mass 

on a spring. The animation at the right 

depicts a mass suspended from a spring. 

The mass hangs at a resting position. If 

the mass is pulled down, the spring is 

stretched. Once the mass is released, it 

begins to vibrate. 



It does the back and forth, vibrating about a fixed position. If the spring is 

rotated horizontally and the mass is placed upon a supporting surface, the same 

back and forth motion can be observed. Pulling the mass to the right of its 

resting position stretches the spring. When released, the mass is pulled back to 

the left, heading towards its resting position. After passing by its resting 

position, the spring begins to compress. The compressions of the coiled spring 

result in a restoring force that again pushes rightward on the leftward moving 

mass. The cycle continues as the mass vibrates back and forth about a fixed 

position. The springs inside of a bed mattress, the suspension systems of some 

cars, and bathroom scales all operated as a mass on a spring system. 



In all the vibrating systems just mentioned, damping is clearly evident. The 

simple pendulum doesn't vibrate forever; its energy is gradually dissipated 

through air resistance and loss of energy to the support. The inverted pendulum 

consisting of a tennis ball mounted to the top of a dowel rod does not vibrate 

forever. Like the simple pendulum, the energy of the tennis ball is dissipated 

through air resistance and vibrations of the support. Frictional forces also cause 

the mass on a spring to lose its energy to the surroundings. In some instances, 

damping is a favored feature. Car suspension systems are intended to dissipate 

vibrational energy, preventing drivers and passengers from having to do the 

back and forth as they also do the down the road. 



Hopefully a lot of our original questions have been answered. But one question 

that has not yet been answered is the question pertaining to quantities that can 

be measured. How can we quantitatively describe a vibrating object? What 

measurements can be made of vibrating objects that would distinguish one 

vibrating object from another? We will ponder this question in the next part of 

this lesson on vibrational motion. 



Properties of Periodic Motion 



A vibrating object is wiggling about a fixed position. Like 

the mass on a spring in the animation at the right, a vibrating 

object is moving over the same path over the course of time. 

Its motion repeats itself over and over again. If it were not 

for damping, the vibrations would endure forever (or at least 

until someone catches the mass and brings it to rest). The 

mass on the spring not only repeats the same motion, it does 

so in a regular fashion. The time it takes to complete one 

back and forth cycle is always the same amount of time. 

Properties of Periodic Motion 



 If it takes the mass 3.2 seconds for the mass to complete the first back and 

forth cycle, then it will take 3.2 seconds to complete the seventh back and 

forth cycle. It's like clockwork. It's so predictable that you could set your 

watch by it. In Physics, a motion that is regular and repeating is referred to as a 

periodic motion. Most objects that vibrate do so in a regular and repeated 

fashion; their vibrations are periodic. (Special thanks to Oleg Alexandrov for 

the animation of the mass on a spring. It is a public domain acquired from 

WikiMedia Commons. ) 



The Sinusoidal Nature of a Vibration 

Suppose that a motion detector was placed below a vibrating mass on a spring 

in order to detect the changes in the mass's position over the course of time. 

And suppose that the data from the motion detector could represent the motion 

of the mass by a position vs. time plot. The graphic below depicts such a graph. 

For discussion sake, several points have been labeled on the graph to assist in 

the follow-up discussion. 



Before reading on, take a moment to reflect on the type of information that is 

conveyed by the graph. And take a moment to reflect about what quantities on 

the graph might be important in understanding the mathematical description of 

a mass on a spring. If you've taken time to ponder these questions, the 

following discussion will likely be more meaningful. 



One obvious characteristic of the graph has to do with its shape. Many students 

recognize the shape of this graph from experiences in Mathematics class. The 

graph has the shape of a sine wave. If y = sine(x) is plotted on a graphing 

calculator, a graph with this same shape would be created. The vertical axis of 

the above graph represents the position of the mass relative to the motion 

detector. A position of about 0.60 m cm above the detector represents the 

resting position of the mass. So the mass is vibrating back and forth about this 

fixed resting position over the course of time. There is something sinusoidal 

about the vibration of a mass on a spring. And the same can be said of a 

pendulum vibrating about a fixed position or of a guitar string or of the air 

inside of a wind instrument. The position of the mass is a function of the sine 

of the time. 



A second obvious characteristic of the graph may be its periodic nature. The 

motion repeats itself in a regular fashion. Time is being plotted along the 

horizontal axis; so any measurement taken along this axis is a measurement of 

the time for something to happen. A full cycle of vibration might be thought of 

as the movement of the mass from its resting position (A) to its maximum 

height (B), back down past its resting position (C) to its minimum position (D), 

and then back to its resting position (E). Using measurements from along the 

time axis, it is possible to determine the time for one complete cycle. The mass 

is at position A at a time of 0.0 seconds and completes its cycle when it is at 

position E at a time of 2.3 seconds. It takes 2.3 seconds to complete the first 

full cycle of vibration. 



 Now if the motion of this mass is periodic (i.e., regular and repeating), then it 

should take the same time of 2.3 seconds to complete any full cycle of 

vibration. The same time-axis measurements can be taken for the sixth full 

cycle of vibration. In the sixth full cycle, the mass moves from a resting 

position (U) up to V, back down past W to X and finally back up to its resting 

position (Y) in the time interval from 11.6 seconds to 13.9 seconds. 



This represents a time of 2.3 seconds to complete the sixth full cycle of 

vibration. The two cycle times are identical. Other cycle times are indicated in 

the table below. By inspection of the table, one can safely conclude that the 

motion of the mass on a spring is regular and repeating; it is clearly periodic. 

The small deviation from 2.3 s in the third cyle can be accounted for by the 

lack of precision in the reading of the graph. 



A third obvious characteristic of the graph is that damping occurs with the 

mass-spring system. Some energy is being dissipated over the course of time. 

The extent to which the mass moves above (B, F, J, N, R and V) or below (D, 

H, L, P, T and X) the resting position (C, E, G, I, etc.) varies over the course of 

time. In the first full cycle of vibration being shown, the mass moves from its 

resting position (A) 0.60 m above the motion detector to a high position (B) of 

0.99 m cm above the motion detector. This is a total upward displacement of 

0.29 m. In the sixth full cycle of vibration that is shown, the mass moves from 

its resting position (U) 0.60 m above the motion detector to a high position 

(V) 0.94 m above the motion detector. This is a total upward displacement of 

0.24 m cm. The table below summarizes displacement measurements for 

several other cycles displayed on the graph. 





Over the course of time, the mass continues to vibrate - moving away from and 

back towards the original resting position. However, the amount of 

displacement of the mass at its maximum and minimum height is decreasing 

from one cycle to the next. This illustrates that energy is being lost from the 

mass-spring system. If given enough time, the vibration of the mass will 

eventually cease as its energy is dissipated. 



Perhaps, this observation of energy dissipation or energy loss is the observation 

that triggers the "slowing down" comment discussed earlier. In physics (or at 

least in the English language), "slowing down" means to "get slower" or to 

"lose speed". Speed, a physics term, refers to how fast or how slow an object is 

moving. To say that the mass on the spring is "slowing down" over time is to 

say that its speed is decreasing over time. But as mentioned (and as will be 

discussed in great detail later), the mass speeds up during two intervals of every 

cycle. As the restoring force pulls the mass back towards its resting position 

(for instance, from B to C and from D to E), the mass speeds up. 



For this reason, a physicist adopts a different language to communicate the idea 

that the vibrations are "dying out". We use the phrase "energy is being dissipated 

or lost" instead of saying the "mass is slowing down." Language is important 

when it comes to learning physics. And sometimes, faulty language (combined 

with surface-level thinking) can confuse a student of physics who is sincerely 

trying to learn new ideas. 



Period and Frequency 

So far in this part of the lesson, we have looked at measurements of time and 

position of a mass on a spring. The measurements were based upon readings of 

a position-time graph. The data on the graph was collected by a motion 

detector that was capturing a history of the motion over the course of time. The 

key measurements that have been made are measurements of:the time for the 

mass to complete a cycle, andthe maximum displacement of the mass above 

(or below) the resting position.These two measurable quantities have names. 

We call these quantities period and amplitude. 



An object that is in periodic motion - such as a mass on a spring, a pendulum or 

a bobblehead doll - will undergo back and forth vibrations about a fixed 

position in a regular and repeating fashion. The fact that the periodic motion is 

regular and repeating means that it can be mathematically described by a 

quantity known as the period. The period of the object's motion is defined as the 

time for the object to complete one full cycle. Being a time, the period is 

measured in units such as seconds, milliseconds, days or even years. The 

standard metric unit for period is the second. 



An object in periodic motion can have a long period or a short period. For 

instance, a pendulum bob tied to a 1-meter length string has a period of about 

2.0 seconds. For comparison sake, consider the vibrations of a piano string that 

plays the middle C note (the C note of the fourth octave). Its period is 

approximately 0.0038 seconds (3.8 milliseconds). When comparing these two 

vibrating objects - the 1.0-meter length pendulum and the piano string which 

plays the middle C note - we would describe the piano string as vibrating 

relatively frequently and we would describe the pendulum as vibrating 

relatively infrequently. Observe that the description of the two objects uses the 

terms frequently and infrequently. The terms fast and slow are not used since 

physics types reserve the words fast and slow to refer to an object's speed. 



Here in this description we are referring to the frequency, not the speed. An 

object can be in periodic motion and have a low frequency and a high speed. 

As an example, consider the periodic motion of the moon in orbit about the 

earth. The moon moves very fast; its orbit is highly infrequent. It moves 

through space with a speed of about 1000 m/s - that's fast. Yet it makes a 

complete cycle about the earth once every 27.3 days (a period of about 2.4x105 

seconds) - that's infrequent. 



Objects like the piano string that have a relatively short period (i.e., a low value 

for period) are said to have a high frequency. Frequency is another quantity that 

can be used to quantitatively describe the motion of an object is periodic 

motion. The frequency is defined as the number of complete cycles occurring 

per period of time. Since the standard metric unit of time is the second, 

frequency has units of cycles/second. The unit cycles/second is equivalent to the 

unit Hertz (abbreviated Hz). The unit Hertz is used in honor of Heinrich Rudolf 

Hertz, a 19th century physicist who expanded our understanding of the 

electromagnetic theory of light waves. 



The concept and quantity frequency is best understood if you attach it to the everyday English 

meaning of the word. Frequency is a word we often use to describe how often something 

occurs. You might say that you frequently check your email or you frequently talk to a friend 

or you frequently wash your hands when working with chemicals. Used in this context, you 

mean that you do these activities often. To say that you frequently check your email means that 

you do it several times a day - you do it often. In physics, frequency is used with the same 

meaning - it indicates how often a repeated event occurs. High frequency events that are 

periodic occur often, with little time in between each occurrence - like the back and forth 

vibrations of the tines of a tuning fork. The vibrations are so frequent that they can't be seen 

with the naked eye. A 256-Hz tuning fork has tines that make 256 complete back and forth 

vibrations each second. At this frequency, it only takes the tines about 0.00391 seconds to 

complete one cycle. A 512-Hz tuning fork has an even higher frequency. Its vibrations occur 

more frequently; the time for a full cycle to be completed is 0.00195 seconds. In comparing 

these two tuning forks, it is obvious that the tuning fork with the highest frequency has the 

lowest period.  



The two quantities frequency and period are inversely related to each other. In 

fact, they are mathematical reciprocals of each other. The frequency is the 

reciprocal of the period and the period is the reciprocal of the frequency. 

Consider their definitions as restated below: 

period = the time for one full cycle to complete itself; i.e., seconds/cycle 

 

frequency = the number of cycles that are completed per time; i.e., 

cycles/second 



Even the definitions have a reciprocal ring to them. To understand the 

distinction between period and frequency, consider the following 

statement:According to Wikipedia (and as of this writing), Tim Ahlstrom of 

Oconomowoc, WI holds the record for hand clapping. He is reported to have 

clapped his hands 793 times in 60.0 seconds.What is the frequency and what is 

the period of Mr. Ahlstrom's hand clapping during this 60.0-second period? 



In this problem, the event that is repeating itself is the clapping of hands; one 

hand clap is equivalent to a cycle. 

 

Frequency = cycles per second = 793 cycles/60.0 seconds = 13.2 cycles/s 

= 13.2 Hz 

 

Period = seconds per cycle = 60.0 s/793 cycles = 0.0757 seconds 



Amplitude of Vibration 

The final measurable quantity that describes a vibrating object is the amplitude. 

The amplitude is defined as the maximum displacement of an object from 

its resting position. The resting position is that position assumed by the object 

when not vibrating. Once vibrating, the object oscillates about this fixed 

position. If the object is a mass on a spring (such as the discussion earlier on 

this page), then it might be displaced a maximum distance of 35 cm below the 

resting position and 35 cm above the resting position. In this case, the 

amplitude of motion is 35 cm. 



Over the course of time, the amplitude of a vibrating object tends to become 
less and less. The amplitude of motion is a reflection of the quantity of energy 
possessed by the vibrating object. An object vibrating with a relatively large 
amplitude has a relatively large amount of energy. Over time, some of this 
energy is lost due to damping. As the energy is lost, the amplitude decreases. 
If given enough time, the amplitude decreases to 0 as the object finally stops 
vibrating. At this point in time, it has lost all its energy. 



Pendulum Motion 

A simple pendulum consists of a relatively massive object hung by a string 

from a fixed support. It typically hangs vertically in its equilibrium position. 

The massive object is affectionately referred to as the pendulum bob. When 

the bob is displaced from equilibrium and then released, it begins its back and 

forth vibration about its fixed equilibrium position. The motion is regular and 

repeating, an example of periodic motion. Pendulum motion was 

introduced earlier in this lesson as we made an attempt to understand the 

nature of vibrating objects.  

http://www.physicsclassroom.com/Class/waves/u10l0a.cfm#p8


Pendulum motion was discussed again as we looked at the mathematical 

properties of objects that are in periodic motion. Here we will investigate 

pendulum motion in even greater detail as we focus upon how a variety of 

quantities change over the course of time. Such quantities will include forces, 

position, velocity and energy - both kinetic and potential energy.  

http://www.physicsclassroom.com/Class/waves/u10l0b.cfm
http://www.physicsclassroom.com/Class/waves/u10l0b.cfm
http://www.physicsclassroom.com/Class/waves/u10l0b.cfm


Force Analysis of a Pendulum 

Earlier in this lesson we learned that an object that is vibrating is acted upon by 

a restoring force. The restoring force causes the vibrating object to slow down 

as it moves away from the equilibrium position and to speed up as it 

approaches the equilibrium position. It is this restoring force that is responsible 

for the vibration. So what forces act upon a pendulum bob? And what is the 

restoring force for a pendulum? There are two dominant forces acting upon a 

pendulum bob at all times during the course of its motion. There is the force of 

gravity that acts downward upon the bob. It results from the Earth's mass 

attracting the mass of the bob. And there is a tension force acting upward and 

towards the pivot point of the pendulum. The tension force results from the 

string pulling upon the bob of the pendulum.  

http://www.physicsclassroom.com/Class/waves/u10l0a.cfm#p6


In our discussion, we will ignore the influence of air resistance - a third force 

that always opposes the motion of the bob as it swings to and fro. The air 

resistance force is relatively weak compared to the two dominant forces. 



The gravity force is highly predictable; it is always in the same direction (down) 

and always of the same magnitude - mass*9.8 N/kg. The tension force is 

considerably less predictable. Both its direction and its magnitude change as the 

bob swings to and fro. The direction of the tension force is always towards the 

pivot point. So as the bob swings to the left of its equilibrium position, the 

tension force is at an angle - directed upwards and to the right. And as the bob 

swings to the right of its equilibrium position, the tension is directed upwards 

and to the left. The diagram below depicts the direction of these two forces at 

five different positions over the course of the pendulum's path. 





In physical situations in which the forces acting on an object are not in the same, 

opposite or perpendicular directions, it is customary to resolve one or more of 

the forces into components. This was the practice used in the analysis of sign 

hanging problems and inclined plane problems. Typically one or more of the 

forces are resolved into perpendicular components that lie along coordinate axes 

that are directed in the direction of the acceleration or perpendicular to it. So in 

the case of a pendulum, it is the gravity force which gets resolved since the 

tension force is already directed perpendicular to the motion. The diagram at the 

right shows the pendulum bob at a position to the right of its equilibrium 

position and midway to the point of maximum displacement. 



A coordinate axis system is sketched on the diagram and the force of gravity is 

resolved into two components that lie along these axes. One of the components 

is directed tangent to the circular arc along which the pendulum bob moves; 

this component is labeled Fgrav-tangent. The other component is directed 

perpendicular to the arc; it is labeled Fgrav-perp. You will notice that the 

perpendicular component of gravity is in the opposite direction of the tension 

force. You might also notice that the tension force is slightly larger than this 

component of gravity. The fact that the tension force (Ftens) is greater than the 

perpendicular component of gravity (Fgrav-perp) means there will be a net 

force which is perpendicular to the arc of the bob's motion. 



This must be the case since we expect that objects that move along circular 

paths will experience an inward or centripetal force. The tangential component 

of gravity (Fgrav-tangent) is unbalanced by any other force. So there is a net 

force directed along the other coordinate axes. It is this tangential component 

of gravity which acts as the restoring force. As the pendulum bob moves to the 

right of the equilibrium position, this force component is directed opposite its 

motion back towards the equilibrium position. 



The above analysis applies for a single location along the pendulum's arc. At 

the other locations along the arc, the strength of the tension force will vary. Yet 

the process of resolving gravity into two components along axes that are 

perpendicular and tangent to the arc remains the same. The diagram below 

shows the results of the force analysis for several other positions. 



There are a couple comments to be made. First, observe the diagram for when 

the bob is displaced to its maximum displacement to the right of the 

equilibrium position. This is the position in which the pendulum bob 

momentarily has a velocity of 0 m/s and is changing its direction. The tension 

force (Ftens) and the perpendicular component of gravity (Fgrav-perp) balance 

each other. At this instant in time, there is no net force directed along the axis 

that is perpendicular to the motion. Since the motion of the object is 

momentarily paused, there is no need for a centripetal force. 



Second, observe the diagram for when the bob is at the equilibrium position 

(the string is completely vertical). When at this position, there is no component 

of force along the tangent direction. When moving through the equilibrium 

position, the restoring force is momentarily absent. Having been restored to the 

equilibrium position, there is no restoring force. The restoring force is only 

needed when the pendulum bob has been displaced away from the equilibrium 

position. You might also notice that the tension force (Ftens) is greater than the 

perpendicular component of gravity (Fgrav-perp) when the bob moves through 

this equilibrium position. Since the bob is in motion along a circular arc, there 

must be a net centripetal force at this position. 



The Sinusoidal Nature of Pendulum Motion 
In the previous part of this lesson, we investigated the sinusoidal nature of the 

motion of a mass on a spring. We will conduct a similar investigation here for 

the motion of a pendulum bob. Let's suppose that we could measure the amount 

that the pendulum bob is displaced to the left or to the right of its equilibrium 

or rest position over the course of time. A displacement to the right of the 

equilibrium position would be regarded as a positive displacement; and a 

displacement to the left would be regarded as a negative displacement. Using 

this reference frame, the equilibrium position would be regarded as the zero 

position. And suppose that we constructed a plot showing the variation in 

position with respect to time. The resulting position vs. time plot is shown 

below. Similar to what was observed for the mass on a spring, the position of 

the pendulum bob (measured along the arc relative to its rest position) is a 

function of the sine of the time. 





Now suppose that we use our motion detector to investigate the how the velocity 

of the pendulum changes with respect to the time. As the pendulum bob does the 

back and forth, the velocity is continuously changing. There will be times at 

which the velocity is a negative value (for moving leftward) and other times at 

which it will be a positive value (for moving rightward). And of course there 

will be moments in time at which the velocity is 0 m/s. If the variations in 

velocity over the course of time were plotted, the resulting graph would 

resemble the one shown below. 



Now let's try to understand the relationship between the position of the bob 

along the arc of its motion and the velocity with which it moves. Suppose we 

identify several locations along the arc and then relate these positions to the 

velocity of the pendulum bob. The graphic below shows an effort to make such 

a connection between position and velocity. 



As is often said, a picture is worth a thousand words. Now here come the 

words. The plot above is based upon the equilibrium position (D) being 

designated as the zero position. A displacement to the left of the equilibrium 

position is regarded as a negative position. A displacement to the right is 

regarded as a positive position. An analysis of the plots shows that the velocity 

is least when the displacement is greatest. And the velocity is greatest when the 

displacement of the bob is least. The further the bob has moved away from the 

equilibrium position, the slower it moves; and the closer the bob is to the 

equilibrium position, the faster it moves. This can be explained by the fact that 

as the bob moves away from the equilibrium position, there is a restoring force 

that opposes its motion. This force slows the bob down. So as the bob moves 

leftward from position D to E to F to G, the force and acceleration is directed 

rightward and the velocity decreases as it moves along the arc from D to G. At 

G - the maximum displacement to the left - the pendulum bob has a velocity of 

0 m/s.  



You might think of the bob as being momentarily paused and ready to change 

its direction. Next the bob moves rightward along the arc from G to F to E to 

D. As it does, the restoring force is directed to the right in the same direction as 

the bob is moving. This force will accelerate the bob, giving it a maximum 

speed at position D - the equilibrium position. 



As the bob moves past position D, it is moving rightward along the arc towards 

C, then B and then A. As it does, there is a leftward restoring force opposing its 

motion and causing it to slow down. So as the displacement increases from D to 

A, the speed decreases due to the opposing force. Once the bob reaches position 

A - the maximum displacement to the right - it has attained a velocity of 0 m/s. 

Once again, the bob's velocity is least when the displacement is greatest. The 

bob completes its cycle, moving leftward from A to B to C to D. Along this arc 

from A to D, the restoring force is in the direction of the motion, thus speeding 

the bob up. So it would be logical to conclude that as the position decreases 

(along the arc from A to D), the velocity increases. Once at position D, the bob 

will have a zero displacement and a maximum velocity. The velocity is greatest 

when the displacement is least. 



The animation at the right (used with the 

permission of Wikimedia Commons; special 

thanks to Hubert Christiaen) provides a visual 

depiction of these principles. The acceleration 

vector that is shown combines both the 

perpendicular and the tangential accelerations 

into a single vector. You will notice that this 

vector is entirely tangent to the arc when at 

maximum displacement; this is consistent 

with the force analysis discussed above. And 

the vector is vertical (towards the center of the 

arc) when at the equilibrium position. This 

also is consistent with the force analysis 

discussed above. 



Energy Analysis 

In a previous chapter of The Physics Classroom Tutorial, the energy possessed 

by a pendulum bob was discussed. We will expand on that discussion here as 

we make an effort to associate the motion characteristics described above with 

the concepts of kinetic energy, potential energy and total mechanical energy. 



The kinetic energy possessed by an object is the energy it possesses due to its 

motion. It is a quantity that depends upon both mass and speed. The equation 

that relates kinetic energy (KE) to mass (m) and speed (v) is 



The faster an object moves, the more kinetic energy that it will possess. We can 

combine this concept with the discussion above about how speed changes 

during the course of motion. This blending of concepts would lead us to 

conclude that the kinetic energy of the pendulum bob increases as the bob 

approaches the equilibrium position. And the kinetic energy decreases as the 

bob moves further away from the equilibrium position. 





The potential energy possessed by an object is the stored energy of position. 

Two types of potential energy are discussed in The Physics Classroom Tutorial 

- gravitational potential energy and elastic potential energy. Elastic potential 

energy is only present when a spring (or other elastic medium) is compressed 

or stretched. A simple pendulum does not consist of a spring. The form of 

potential energy possessed by a pendulum bob is gravitational potential energy. 

The amount of gravitational potential energy is dependent upon the mass (m) 

of the object and the height (h) of the object. The equation for gravitational 

potential energy (PE) is 

where g represents the gravitational field strength (sometimes referred to as the 

acceleration caused by gravity) and has the value of 9.8 N/kg. 

http://www.physicsclassroom.com/Class/energy/u5l1b.cfm


The height of an object is expressed relative to some arbitrarily assigned zero 

level. In other words, the height must be measured as a vertical distance above 

some reference position. For a pendulum bob, it is customary to call the lowest 

position the reference position or the zero level. So when the bob is at the 

equilibrium position (the lowest position), its height is zero and its potential 

energy is 0 J. As the pendulum bob does the back and forth, there are times 

during which the bob is moving away from the equilibrium position. As it does, 

its height is increasing as it moves further and further away. It reaches a 

maximum height as it reaches the position of maximum displacement from the 

equilibrium position. As the bob moves towards its equilibrium position, it 

decreases its height and decreases its potential energy. 





Now let's put these two concepts of kinetic energy and 
potential energy together as we consider the motion of a 
pendulum bob moving along the arc shown in the diagram at 
the right. We will use an energy bar chart to represent the 
changes in the two forms of energy. The amount of each form 
of energy is represented by a bar. The height of the bar is 
proportional to the amount of that form of energy. In addition 
to the potential energy (PE) bar and kinetic energy (KE) bar, 
there is a third bar labeled TME. The TME bar represents the 
total amount of mechanical energy possessed by the pendulum 
bob. The total mechanical energy is simply the sum of the two 
forms of energy – kinetic plus potential energy. Take some time 
to inspect the bar charts shown below for positions A, B, D, F 
and G. What do you notice? 

http://www.physicsclassroom.com/Class/energy/u5l2c.cfm
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When you inspect the bar charts, it is evident that as the bob 
moves from A to D, the kinetic energy is increasing and the 
potential energy is decreasing. However, the total amount of 
these two forms of energy is remaining constant. Whatever 
potential energy is lost in going from position A to position D 
appears as kinetic energy. There is a transformation of potential 
energy into kinetic energy as the bob moves from position A to 
position D. Yet the total mechanical energy remains constant. 
We would say that mechanical energy is conserved. As the bob 
moves past position D towards position G, the opposite is 
observed. Kinetic energy decreases as the bob moves rightward 
and (more importantly) upward toward position G. There is an 
increase in potential energy to accompany this decrease in 
kinetic energy. Energy is being transformed from kinetic form 
into potential form. Yet, as illustrated by the TME bar, the total 
amount of mechanical energy is conserved. This very principle 
of energy conservation was explained in the Energy chapter of 
The Physics Classroom Tutorial. 

http://www.physicsclassroom.com/Class/energy/u5l2bb.cfm


The Period of a Pendulum 
Our final discussion will pertain to the period of the pendulum. 
As discussed previously in this lesson, the period is the time it 
takes for a vibrating object to complete its cycle. In the case of 
pendulum, it is the time for the pendulum to start at 
one extreme, travel to the opposite extreme, and then return 
to the original location. Here we will be interested in the 
question What variables affect the period of a pendulum? We 
will concern ourselves with possible variables. The variables are 
the mass of the pendulum bob, the length of the string on 
which it hangs, and the angular displacement. The angular 
displacement or arc angle is the angle that the string makes 
with the vertical when released from rest. These three 
variables and their effect on the period are easily studied and 
are often the focus of a physics lab in an introductory physics 
class. The data table below provides representative data for 
such a study. 

http://www.physicsclassroom.com/Class/waves/u10l0b.cfm




In trials 1 through 5, the mass of the bob was systematically 
altered while keeping the other quantities constant. By so 
doing, the experimenters were able to investigate the possible 
effect of the mass upon the period. As can be seen in these five 
trials, alterations in mass have little effect upon the period of 
the pendulum.In trials 4 and 6-9, the mass is held constant at 
0.200 kg and the arc angle is held constant at 15°. However, the 
length of the pendulum is varied. By so doing, the 
experimenters were able to investigate the possible effect of 
the length of the string upon the period. As can be seen in 
these five trials, alterations in length definitely have an effect 
upon the period of the pendulum. As the string is lengthened, 
the period of the pendulum is increased. There is a direct 
relationship between the period and the length. 



Finally, the experimenters investigated the possible effect of 
the arc angle upon the period in trials 4 and 10-13. The mass is 
held constant at 0.200 kg and the string length is held constant 
at 0.400 m. As can be seen from these five trials, alterations in 
the arc angle have little to no effect upon the period of the 
pendulum. 



So the conclusion from such an experiment is that the one 
variable that effects the period of the pendulum is the length 
of the string. Increases in the length lead to increases in the 
period. But the investigation doesn't have to stop there. The 
quantitative equation relating these variables can be 
determined if the data is plotted and linear regression analysis 
is performed. The two plots below represent such an analysis. 
In each plot, values of period (the dependent variable) are 
placed on the vertical axis. In the plot on the left, the length of 
the pendulum is placed on the horizontal axis. The shape of the 
curve indicates some sort of power relationship between 
period and length. In the plot on the right, the square root of 
the length of the pendulum (length to the ½ power) is plotted. 
The results of the regression analysis are shown. 





The analysis shows that there is a better fit of the data and the regression line 

for the graph on the right. As such, the plot on the right is the basis for the 

equation relating the period and the length. For this data, the equation is 

Using T as the symbol for period and L as the symbol for length, the equation 

can be rewritten as 

The commonly reported equation based on theoretical development is 



where g is a constant known as the gravitational field strength 
or the acceleration of gravity (9.8 N/kg). The value of 2.0045 
from the experimental investigation agrees well with what 
would be expected from this theoretically reported equation. 
Substituting the value of g into this equation, yields a 
proportionality constant of 2Π/g0.5, which is 2.0071, very 
similar to the 2.0045 proportionality constant developed in the 
experiment. 



Motion of a Mass on a Spring 

In a previous part of this lesson, the motion of a mass attached 
to a spring was described as an example of a vibrating system. 
The mass on a spring motion was discussed in more detail as 
we sought to understand the mathematical properties of 
objects that are in periodic motion. Now we will investigate the 
motion of a mass on a spring in even greater detail as we focus 
on how a variety of quantities change over the course of time. 
Such quantities will include forces, position, velocity and 
energy - both kinetic and potential energy. 

http://www.physicsclassroom.com/Class/waves/u10l0a.cfm
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Hooke's Law 

We will begin our discussion with an investigation of the forces 
exerted by a spring on a hanging mass. Consider the system 
shown at the right with a spring attached to a support. The 
spring hangs in a relaxed, unstretched position. If you were to 
hold the bottom of the spring and pull downward, the spring 
would stretch. If you were to pull with just a little force, the 
spring would stretch just a little bit. And if you were to pull with 
a much greater force, the spring would stretch a much greater 
extent. Exactly what is the quantitative relationship between 
the amount of pulling force and the amount of stretch? 



To determine this quantitative relationship between the 
amount of force and the amount of stretch, objects of known 
mass could be attached to the spring. For each object which is 
added, the amount of stretch could be measured. The force 
which is applied in each instance would be the weight of the 
object. A regression analysis of the force-stretch data could be 
performed in order to determine the quantitative relationship 
between the force and the amount of stretch. The data table 
below shows some representative data for such an experiment. 



By plotting the force-stretch data and performing a linear 
regression analysis, the quantitative relationship or equation 
can be determined. The plot is shown below. 



A linear regression analysis yields the following statistics: 

The equation for this line is 



The fact that the regression constant is very close to 1.000 
indicates that there is a strong fit between the equation and 
the data points. This strong fit lends credibility to the results of 
the experiment. 
This relationship between the force applied to a spring and the 
amount of stretch was first discovered in 1678 by English 
scientist Robert Hooke. As Hooke put it: Ut tensio, sic vis. 
Translated from Latin, this means "As the extension, so the 
force." In other words, the amount that the spring extends is 
proportional to the amount of force with which it pulls. If we 
had completed this study about 350 years ago (and if we knew 
some Latin), we would be famous! Today this quantitative 
relationship between force and stretch is referred to as Hooke's 
law and is often reported in textbooks as 



where Fspring is the force exerted upon the spring, x is the 
amount that the spring stretches relative to its relaxed position, 
and k is the proportionality constant, often referred to as the 
spring constant. The spring constant is a positive constant 
whose value is dependent upon the spring which is being 
studied. A stiff spring would have a high spring constant. This is 
to say that it would take a relatively large amount of force to 
cause a little displacement. The units on the spring constant 
are Newton/meter (N/m). The negative sign in the above 
equation is an indication that the direction that the spring 
stretches is opposite the direction of the force which the spring 
exerts. For instance, when the spring was stretched below its 
relaxed position, x is downward. The spring responds to this 
stretching by exerting an upward force. The x and the F are in 
opposite directions. A final comment regarding this equation is 
that it works for a spring which is stretched vertically and for a 
spring is stretched horizontally (such as the one to be discussed 
below). 



Force Analysis of a Mass on a Spring 
Earlier in this lesson we learned that an object that is vibrating is acted upon by a restoring force. The restoring force 
causes the vibrating object to slow down as it moves away from the equilibrium position and to speed up as it approaches 
the equilibrium position. It is this restoring force which is responsible for the vibration. So what is the restoring force for a 
mass on a spring? 
We will begin our discussion of this question by considering the system in the diagram below. 

http://www.physicsclassroom.com/Class/waves/u10l0a.cfm#restoreForce


The diagram shows an air track and a glider. The glider is 
attached by a spring to a vertical support. There is a negligible 
amount of friction between the glider and the air track. As 
such, there are three dominant forces acting upon the glider. 
These three forces are shown in the free-body diagram at the 
right. The force of gravity (Fgrav) is a rather predictable force - 
both in terms 

found as the product of mass and the acceleration of gravity 
(m•9.8 N/kg). The support force (Fsupport) balances the force 
of gravity. It is supplied by the air from the air track, causing the 
glider to levitate about the track's surface. The final force is the 
spring force (Fspring). As discussed above, the spring force 
varies in magnitude and in direction. Its magnitude can be 
found using Hooke's law. Its direction is always opposite the 
direction of stretch and towards the equilibrium position. As 
the air track glider does the back and forth, the spring force 
(Fspring) acts as the restoring force. It acts leftward on the 
glider when it is positioned to the right of the equilibrium 
position; and it acts rightward on the glider when it is 
positioned to the left of the equilibrium position. 

of its magnitude and its direction. The force of gravity   always acts downward; its magnitude can be  



Let's suppose that the glider is pulled to the right of the 
equilibrium position and released from rest. The diagram 
below shows the direction of the spring force at five different 
positions over the course of the glider's path. As the glider 
moves from position A (the release point) to position B and 
then to position C, the spring force acts leftward upon the 
leftward moving glider. As the glider approaches position C, the 
amount of stretch of the spring decreases and the spring force 
decreases, consistent with Hooke's Law. Despite this decrease 
in the spring force, there is still an acceleration caused by the 
restoring force for the entire span from position A to position C. 
At position C, the glider has reached its maximum speed. Once 
the glider passes to the left of position C, the spring force acts 
rightward. During this phase of the glider's cycle, the spring is 
being compressed. The further past position C that the glider 
moves, the greater the amount of compression and the greater 
the spring force. This spring force acts as a restoring force, 
slowing the glider down as it moves from position C to position 
D to position E. By the time the glider has reached position E, it 
has slowed down to a momentary rest position before 
changing its direction and heading back towards the 
equilibrium position. During the glider's motion from position E 
to position C, the amount that the spring is compressed 
decreases and the spring force decreases. There is still an 
acceleration for the entire distance from position E to position 
C. At position C, the glider has reached its maximum speed. 
Now the glider begins to move to the right of point C. As it 
does, the spring force acts leftward upon the rightward moving 
glider. This restoring force causes the glider to slow down 
during the entire path from position C to position D to position 
E. 





Sinusoidal Nature of the Motion of a Mass on a Spring 

Previously in this lesson, the variations in the position of a mass 
on a spring with respect to time were discussed. At that time, it 
was shown that the position of a mass on a spring varies with 
the sine of the time. The discussion pertained to a mass that 
was vibrating up and down while suspended from the spring. 
The discussion would be just as applicable to our glider moving 
along the air track. If a motion detector were placed at the 
right end of the air track to collect data for a position vs. time 
plot, the plot would look like the plot below. Position A is the 
right-most position on the air track when the glider is closest to 
the detector. 

http://www.physicsclassroom.com/Class/waves/u10l0b.cfm#p2


The labeled positions in the diagram above are the same 
positions used in the discussion of restoring force above. You 
might recall from that discussion that positions A and E were 
positions at which the mass had a zero velocity. Position C was 
the equilibrium position and was the position of maximum 
speed. If the same motion detector that collected position-time 
data were used to collect velocity-time data, then the plotted 
data would look like the graph below. 



Observe that the velocity-time plot for the mass on a spring is 
also a sinusoidal shaped plot. The only difference between the 
position-time and the velocity-time plots is that one is shifted 
one-fourth of a vibrational cycle away from the other. Also 
observe in the plots that the absolute value of the velocity is 
greatest at position C (corresponding to the equilibrium 
position). The velocity of any moving object, whether vibrating 
or not, is the speed with a direction. The magnitude of the 
velocity is the speed. The direction is often expressed as a 
positive or a negative sign. In some instances, the velocity has a 
negative direction (the glider is moving leftward) and its 
velocity is plotted below the time axis. In other cases, the 
velocity has a positive direction (the glider is moving rightward) 
and its velocity is plotted above the time axis. You will also 
notice that the velocity is zero whenever the position is at an 
extreme. This occurs at positions A and E when the glider is 
beginning to change direction. So just as in the case of 
pendulum motion, the speed is greatest when the 
displacement of the mass relative to its equilibrium position is 
the least. And the speed is least when the displacement of the 
mass relative to its equilibrium position is the greatest. 

http://www.physicsclassroom.com/Class/1DKin/U1L1c.cfm
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Energy Analysis of a Mass on a Spring 
On the previous page, an energy analysis for the vibration of a 
pendulum was discussed. Here we will conduct a similar 
analysis for the motion of a mass on a spring. In our discussion, 
we will refer to the motion of the frictionless glider on the air 
track that was introduced above. The glider will be pulled to 
the right of its equilibrium position and be released from rest 
(position A). As mentioned, the glider then accelerates towards 
position C (the equilibrium position). Once the glider passes 
the equilibrium position, it begins to slow down as the spring 
force pulls it backwards against its motion. By the time it has 
reached position E, the glider has slowed down to a 
momentary pause before changing directions and accelerating 
back towards position C. Once again, after the glider passes 
position C, it begins to slow down as it approaches position A. 
Once at position A, the cycle begins all over again ... and again 
... and again. 

http://www.physicsclassroom.com/Class/waves/u10l0c.cfm#energy


The kinetic energy possessed by an object is the energy it 
possesses due to its motion. It is a quantity that depends upon 
both mass and speed. The equation that relates kinetic energy 
(KE) to mass (m) and speed (v) is 

http://www.physicsclassroom.com/Class/energy/u5l1c.cfm


The faster an object moves, the more kinetic energy that it will 
possess. We can combine this concept with the discussion 
above about how speed changes during the course of motion. 
This blending of the concepts would lead us to conclude that 
the kinetic energy of the mass on the spring increases as it 
approaches the equilibrium position; and it decreases as it 
moves away from the equilibrium position. 

This information is summarized in the table below: 



Kinetic energy is only one form of mechanical energy. The 
other form is potential energy. Potential energy is the stored 
energy of position possessed by an object. The potential energy 
could be gravitational potential energy, in which case the 
position refers to the height above the ground. Or the potential 
energy could be elastic potential energy, in which case the 
position refers to the position of the mass on the spring relative 
to the equilibrium position. For our vibrating air track glider, 
there is no change in height. So the gravitational potential 
energy does not change. This form of potential energy is not of 
much interest in our analysis of the energy changes. There is 
however a change in the position of the mass relative to its 
equilibrium position. Every time the spring is compressed or 
stretched relative to its relaxed position, there is an increase in 
the elastic potential energy. The amount of elastic potential 
energy depends on the amount of stretch or compression of 
the spring. The equation that relates the amount of elastic 
potential energy (PEspring) to the amount of compression or 
stretch (x) is where k is the spring constant (in N/m) and x is the distance 

that the spring is stretched or compressed relative to the 
relaxed, unstretched position. 



When the air track glider is at its equilibrium position (position 
C), it is moving it's fastest (as discussed above). At this position, 
the value of x is 0 meter. So the amount of elastic potential 
energy (PEspring) is 0 Joules. This is the position where the 
potential energy is the least. When the glider is at position A, 
the spring is stretched the greatest distance and the elastic 
potential energy is a maximum. A similar statement can be 
made for position E. At position E, the spring is compressed the 
most and the elastic potential energy at this location is also a 
maximum. Since the spring stretches as much as compresses, 
the elastic potential energy at position A 
(the stretched position) is the same as at position E 
(the compressed position). At these two positions - A and E - 
the velocity is 0 m/s and the kinetic energy is 0 J. So just 
like the case of a vibrating pendulum, a vibrating mass on a 
spring has the greatest potential energy when it has the 
smallest kinetic energy. And it also has the smallest potential 
energy (position C) when it has the greatest kinetic energy. 
These principles are shown in the animation below. 

http://www.physicsclassroom.com/Class/waves/u10l0c.cfm#p13


When conducting an energy analysis, a common representation 
is an energy bar chart. An energy bar chart uses a bar graph to 
represent the relative amount and form of energy possessed by 
an object as it is moving. It is a useful conceptual tool for 
showing what form of energy is present and how it changes 
over the course of time. The diagram below is an energy bar 
chart for the air track glider and spring system. 



The bar chart reveals that as the mass on the spring moves 
from A to B to C, the kinetic energy increases and the elastic 
potential energy decreases. Yet the total amount of these two 
forms of mechanical energy remains constant. Mechanical 
energy is being transformed from potential form to kinetic 
form; yet the total amount is being conserved. A similar 
conservation of energy phenomenon occurs as the mass moves 
from C to D to E. As the spring becomes compressed and the 
mass slows down, its kinetic energy is transformed into elastic 
potential energy. As this transformation occurs, the total 
amount of mechanical energy is conserved. This very principle 
of energy conservation was explained in a previous chapter - 
the Energy chapter - of The Physics Classroom Tutorial. 
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Period of a Mass on a Spring 

As is likely obvious, not all springs are created equal. And not 
all spring-mass systems are created equal. One measurable 
quantity that can be used to distinguish one spring-mass 
system from another is the period. As discussed earlier in this 
lesson, the period is the time for a vibrating object to make one 
complete cycle of vibration. The variables that effect the period 
of a spring-mass system are the mass and the spring constant. 
The equation that relates these variables resembles the 
equation for the period of a pendulum. The equation is 
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where T is the period, m is the mass of the object attached to 
the spring, and k is the spring constant of the spring. The 
equation can be interpreted to mean that more massive 
objects will vibrate with a longer period. Their 
greater inertia means that it takes more time to complete a 
cycle. And springs with a greater spring constant (stiffer 
springs) have a smaller period; masses attached to these 
springs take less time to complete a cycle. Their greater spring 
constant means they exert stronger restoring forces upon the 
attached mass. This greater force reduces the length of time to 
complete one cycle of vibration. 
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Looking Forward to Lesson 2 


